The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 0  X 2X  0 X+3 2X X+3 2X+6  0  6 X+3 2X  0 X+6 2X+3  6 X+3 2X+6  6  X  6 2X+6  X 2X+6  3  X 2X  0  0  6  6 X+3 X+3  X X+6 2X 2X+6 2X+6 2X  6 X+6 2X 2X+3  3  X  3 2X+3  6 X+3 X+6 2X  0 X+3 2X+6  3  X 2X+3  0 X+6 2X+3  3  X 2X+3 2X 2X+6  0  6  3 2X+3 2X+6 X+3 X+6  X 2X+3  3  3  3 2X+3 X+6 X+6 X+6  0  0
 0  0  6  0  3  0  6  3  6  3  3  0  6  3  3  0  0  3  3  6  6  6  6  0  3  0  6  0  6  3  6  3  6  3  0  3  0  6  3  0  3  3  0  3  6  0  0  6  6  0  6  3  0  6  6  3  3  3  6  3  0  0  0  0  3  3  0  6  6  0  0  6  3  6  0  6  3  6  0  6  3  0  0
 0  0  0  6  6  6  3  3  3  6  3  3  0  0  6  3  6  0  3  6  6  3  0  0  0  3  6  3  6  0  0  0  0  6  6  0  6  6  3  0  3  6  3  3  3  6  0  3  6  0  3  6  3  0  6  0  0  3  3  3  0  6  6  0  6  0  6  3  6  3  0  6  3  3  3  0  6  0  3  0  6  0  0

generates a code of length 83 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 162.

Homogenous weight enumerator: w(x)=1x^0+80x^162+1944x^166+160x^168+2x^249

The gray image is a code over GF(3) with n=747, k=7 and d=486.
This code was found by Heurico 1.16 in 0.339 seconds.